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Abstract

The hydricity (∆GH−) is a molecular property that measures the thermodynamic
ability to donate a hydride ion, H−, and plays an important role in the selection and
design of molecular electrocatalysts for clean energy chemistry such as CO2 reduc-
tion. Computational methods can aid catalyst design through predicting thermody-
namic hydricities specifically through the use of Density Functional Theory (DFT).
Although DFT is computationally efficient, the accuracy of DFT depends on the
choice of various parameters including functional approximation, atomic basis set,
and solvent model. In our study, we seek to benchmark and compare these param-
eters for their accuracy in predicting thermodynamic hydricities. We use ordinary
least squares linear regression to map computed hydricity half-reaction free energies
(∆GHHR) against experimentally determined hydricity values (∆GH−) of various
organic and organometallic hydride donors. Through the comparison of root-mean-
squared errors, correlation coefficients, the slope, and intercept of the regression, we
can judge the quality of a parameter set. Preliminary data shows that B3LYP per-
forms better than BP86 and the larger TZVP-LTZ basis set performs better than
6-31G*-LDZ. In addition, the data shows that the choice of functional is more
important than the choice of basis set. Future work will include more molecules,
functionals, basis sets, and solvent models to expand our benchmark.

Introduction
The electrochemical reduction of CO2 is an important direction of research to develop

the renewable energy economy of the future. Generally speaking, CO2 reduction involves
the transfer of protons and electrons to the CO2 molecule to produce reduced species such
as formate anion, methanol, and methane. The reduction of CO2 to formate in particular
involves the transfer of a hydride (H−) ion. The ability of these species to dissociate
a hydride ion is defined as its thermodynamic hydricity. Hydricity plays an important
role in catalytic design as the difference in the hydricity between the donor and acceptor,
such as the catalyst and the formate ion, dictates the energy difference of that reaction
being reduced dictates the energy barrier of that reaction and thus the ease the catalyst
can reduce the target molecule. Many factors play in a molecule’s hydricity including
electronic, structural, and conformational; manipulating these factors can influence the
hydricity. For example, Raebiger et al. demonstrated the ability to control the hydricity
of palladium diphosphine complexes through the ligand bite angles1.
The experimental measurement of thermodynamic hydricities is difficult and involves

the use of multiple thermodynamic cycles, which involves taking sums and differences over
the results of multiple experiments that form a thermodynamic pathway that connects the
species of interest. To complement experiment, quantum chemical methods can also be
used to predict hydricities. Ab initio or first-principles methods that treat the electrons
in the system explicitly without empirical parameters such as coupled cluster singles and
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double (CCSD) and 2nd order møller plesset perturbation theory MP2 have been used
to study the thermodynamic hydricities of transition-metal hydrides in acetonitrile2,3.
More semi-empirical methods like density functional theory (DFT) have been employed
in predicting the hydricity of an Ir based electrocatalyst4. Among the methods, DFT is
popular in theoretical hydricity studies for its ability to achieve high accuracy without
a high computational cost, however, the accuracy of a calculation depends on the choice
of density functional approximations (here referred to as "functionals"), atomic basis
sets, and solvent model for the system of interest. Developing functionals to achieve
high accuracy for a specific system or classes of systems is a nontrivial task, so already
established functionals that have been rigorously parameterized and tested are more
commonly used. Examples of popular "all-purpose functionals" include B3LYP, PBE0,
and M06 which all find use in theoretical studies of hydricity2,4–6.
Although many functionals exist allowing flexibility in the accuracy and costs of per-

forming hydricity calculations, the large "zoo" of functionals can overwhelm users. Be-
cause lack of a systematic way of improving density functionals unlike other quantum
chemistry methods, many functionals have been developed to try to accurately simulate
different systems of interest. Along with the choice of functional, users must also deal
with the choice of atomic basis sets and solvent model. Generally, the larger the basis set,
the more accurate the DFT calculation as more of the Hilbert space that describes the
wavefunction is spanned. Additional factors also determine how well a basis set describes
the electronic structure of a system such as including polarization functions to allow
molecular orbitals to have more asymmetry or including diffuse functions to improve the
description of atomic orbital at long distances from the atom. Another option to use in
the choice of basis set are effective core potentials (ECPs) which replace the inner core
electrons with an effective potential as they do not participate in chemical bonding as
much as the valence electrons. An ECP can account for relativistic effects which are
usually confined to the core electrons and serve to speed up calculations by reducing the
number of electrons to calculate.
In addition to basis sets, the choice of solvent model is important to the accuracy of

a calculation. The most accurate model would have solvent molecules explicitly present
in the calculation, but this method is quite costly for quantum calculations and so im-
plicit solvent models are more often used. Implicit solvent models generally represent the
solvent as a continuous medium that has properties to replicate the interaction of the
solvent(s) with the solute. A class of implicit model commonly used for hydricity cal-
culations is the polarizable continuum model (PCM) where the medium is a polarizable
medium7. C-PCM is a variation where the medium is a conductor like in the COSMO
model8. Other examples of implicit solvent models include solvent model SMX9 and
solvent model based on density SMD10.
For convenience, we will denote a combination of a functional, basis set, and solvent

model as a parameter set. Because of the large number of combinations of these factors,
benchmarks of functionals, atomic basis sets, and solvent models in predicting thermo-
dynamic hydricity are necessary to determine the optimal parameter set. Benchmark
studies are resource and time-consuming, but when conducted carefully, can be greatly
helpful to other research groups interested in using density functional theory to study
hydricity and problems such as CO2 reduction. In our previous work on a four-centered
iron electrocatalyst, we performed a small benchmark in the prediction of redox potentials
with the 4 different functionals and 3 different atomic basis sets in acetonitrile11.
In this study, we seek to establish a similar benchmark for predicting thermodynamic
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hydricities with a larger range of functionals, atomic basis sets, and solvent models.
Currently, we show that the hybrid B3LYP outperforms the GGA BP86 and that the
larger TZVP-LTZ basis set outperforms 6-31G*-LDZ. In addition, we find that the choice
of functional is more important than the choice of basis sets in terms of the impact on
accuracy. We also show that optimizing the geometry of the benchmark molecules in the
gas phase and running single point calculations in solvent does not predict hydricities
significantly different from each other at the B3LYP/TZVP-LTZ level.

Methods
The hydricity of a hydride donating species, AH− or BH, is defined as the standard

free energy change of the following reactions.

AH− → A+H− (1a)
BH → B+ +H− (1b)

In a solvent, we denote the hydricity with reaction 1a as:

∆G∗
H−(AH−) = G∗(A) +G∗(H−)−∆G∗(AH−) (2)

where ∆G∗
H−(AH−) is the thermodynamic hydricity and the G∗ values correspond to

absolute free energies of the species indicated. The asterisk indicates a standard state of
one mole per liter in solution to distinguish it from one atmosphere of pressure in the gas
phase. More negative ∆G∗

H−(AH−) values imply a stronger hydride donating species.
Experimentally, the thermodynamic hydricity of a species is measured using thermody-

namic cycles due to the difficulty in measuring the free energy value of solvated hydride
ion, G ∗ (H−). Curtis and coworkers have measured the hydricities of transition metal
complexes using a scheme based on equilibrium measurements for the heterolytic cleav-
age of hydrogen by transition metal complexes in the presence of bases for which the
conjugate acid pKa values are known12. Ilic and coworkers measured the hydricity of hy-
dricity biomimetic organic hydride donors standard reduction potentials and pKa values
to determine the results13.
Computationally, we can calculate each of the free energy terms in eq. 2 to derive

the hydricity, but similarly to experiment, the difficulty of calculating the absolute free
energy of solvated hydride ion precludes direct theoretical estimation as implicit solvent
models fail to provide a good description of the solvent-hydride interaction. Previous
ab initio approaches circumvented the calculation of this term through the use of an
isodesmic scheme in which the experimentally derived hydricity value of a species is used
as a reference2. Another method uses a similar isodesmic scheme to calculate the relative
hydricity values from a reference hydricity, ∆∆Go

H− to determine hydricity values14. Ilic
et al. directly calculate the free energy of solvated hydride ion using calculated gas
phase free energy and electron affinity values and experimental one-electron reduction
potential of hydrogen13. A fourth method uses experimentally derived hydricity values
and calculated values of G∗(A) and G∗(AH−) to make G∗(H−) a fitting parameter.
We follow this approach, described by Muckerman et al.15, by defining a "hydricity half
reaction" (HHR) of the form:

∆G∗
HHR = G∗(A)−G∗(AH−) (3)

Substituting eq. 3 into the definition of hydricity in eq. 2 results in the following relation.

3



∆G∗
H−(AH−) = G∗

HHR(AH−) +G∗(H−) (4)

We can use eq. 4 to plot calculated ∆GHHR against experimentally derived GH− for each
parameter set and use an ordinary least squares regression to fit GH− .
To ensure our benchmark covers a large range of hydride donating molecules and hy-

dricities values, we use 30 organic and inorganic molecules with known experimental
hydricity values in acetonitrile. 5 of these molecules come from Muckerman et al. paper
in 201215 so our benchmark can expand on their work. The measured hydricities span 25
years of literature from 1993 to 2018 and covers a variety of experimental techniques such
as the potential-pKa method, the hydride transfer method, and H2 heterolysis method
described by Ilic and coworkers13. These methods generally employ measuring the free
energy changes of various processes such as the dissociation of a proton and summing
or subtracting the processes to calculate ∆GH− . These molecules are split between 15
organic and 15 inorganic hydride donors that cover a range of hydricities from 26 to 129.2
kcal/mol, although there is bias towards more experimentally available hydricity values
for stronger hydride donors.

Table 1: Experimental hydricity values, ∆GH− for various organic and inorganic hydride
donors in acetonitrile

Compound Experimental
∆GH− (kcal/mol) Compound Experimental

∆GH− (kcal/mol)

BNAH 59a Cp*Re(NO)(CO)(CHO)− 52.6g
CN-BNAH 63a FeN(CO)12H 49h
Cp*Mo(PMe3)(CO)2H 58a FeC(CO)12H 44i
CpMo(PMe3)(CO)2H 52.6a (Si(PiPr)3)Fe(H2)(H) 54.3j
ArcH2 70 a [HNi(dmpe)2]+ 48.9k
Ph3CH 99 [HPt(dmpp)2]+ 52.5e
p-CN(Ph)CH3CN 129.2b [HPd(depe)2]+ 43.2l
HEH 61.5c HCo(dppe)2 49.1e
2OH 60.3c HRh(depx)2 45m
3NH 49.2c CpFe(CO)2H 62n
BIMH 50.1c Fluorene 109o
BEt3H− 26d Toulene 118o
[HNi(dedpe)2]+ 59.8e [HPd(PNP)2]+ 51.1p
PhArcH 76.3f BMpyH 43q
CpRe(NO)(CO)(CHO)− 55g CHOO− 44.2r

a Ref. [16], b Ref. [17],c Ref. Ilic et al. [13],d Ref. [18], e Ref. [19], f Ref. [20], g Ref. [21], h
Ref. [22], i Ref, [23], j Ref. [24], d Ref. [25], l Ref. [1], m Ref. [26], n Ref. [27], o Ref. [28], p
Ref. [29], q Ref. [30], r Ref. [31]

Computational Methods
All calculations were carried out using TeraChem32 which uses graphics processing units

to accelerate the computation of the coulomb and exchange matrices, ECPs, and solvent
response that appear in the SCF calculation.

G = Gsolv + ESCF + ZPE +Htr,vib,rot − TStr,rot,vib (5)
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In TeraChem, the Gibbs free energy for a solvated species is defined in eq. 5. To calcu-
late the values in eq. 5 we employ two optimization schemes. In the first scheme, we use
geometry optimization methods using translation-rotation internal coordinates to accel-
erate the energy minimization calculations33. Geometry optimization was used to derive
the self-consistent field (SCF) electronic energy together with the solvation free energy.
Vibrational frequency calculations were used to derive the zero point energy and Gibbs
free energy contributions within the harmonic approximation which assumes that the
vibrational enthalpy and entropy of a molecule is well-described using a set of harmonic
oscillators obtained from the normal modes.
For the parameter sets examined, eights combinations of functionals (B3LYP and

BP86), basis sets (6-31G*-LDZ and TZVP-LDZ), and solvent model (C-PCM and Gas
Phase) were examined for this paper. The solvent was chosen to replicate acetonitrile
by giving the medium a dielectric constant, ε, of 37.5. The basis sets have the addition
of -LDZ/-LTZ to designate that the LANL2DZ/LANL2TZ basis set and associated ECP
was used for elements from Sc and heavier.
For the calculations, geometry optimization at the eight levels of theory discussed was

ran for all thirty molecules in table 1 for their hydride donor and hydride conjugate
acceptor, however, some calculations for either the donor or acceptor were not complete or
failed leading to some incomplete data. For statistical analysis, ordinary linear regression
was performed and summarized in table 2. The most likely spin state of the donor and
acceptor was determined through running calculations on each molecule at different spin
states and selecting the calculations that gave the lowest free energy values.
In addition to the first scheme where all values in eq.3 were calculated using geometry

optimization for all 8 parameter sets, the second scheme we employ involves performing
single point calculations with C-PCM with the structures that were optimized in the
gas phase from the first scheme. We employ these two optimization schemes to evaluate
whether the calculated Gsolv andHSCF differ significantly. For the comparison, we assume
that the frequency corrections in eq. 5 are small therefore we use the same frequency
corrections of the structure that was geometry optimized in solvent phase and compare
∆GHHR values.

Results and Discussion
Comparison between optimization schemes

We start our discussion of the calculations with the comparison of the ∆GHHR val-
ues using the geometry optimization schemes in the gas phase and solvent phase. Be-
cause the calculation for either the hydride donor or acceptor failed for HCo(dppe)2,
CpRe(NO)(CO)(CHO)−, and Cp*Re(NO)(CO)(CHO)−, they were not able to be in-
cluded in the comparison. We plot the calculated ∆GHHR from both optimization
schemes against each other and evaluate how close to unity the slope and r2 of a lin-
ear regression of the plot are for comparison. The frequency contributions are small so
we use the frequency calculations from solvent phase geometry optimization to calculate
∆GHHR for a single point calculation.
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Figure 1: Comparison of calculated ∆GHHR values of 27 organic and inorganic hy-
dride donating molecules from both optimization schemes. Data points for HCo(dppe)2,
CpRe(NO)(CO)(CHO)−, and Cp*Re(NO)(CO)(CHO)− were not included as calculations
for these molecules were incomplete. The r2 and slope are both close to 1 indicating that
performing single point calculations for Gsolv and ESCF in solvent phase using gas phased
geometry optimized structures does not produce significant differences from geometry
optimization calculations for Gsolv and ESCF in solvent phase.

The calculated ∆GHHR values from both optimization schemes in fig. 1 show close
agreement as the linear regression has a r2 and a slope very close to unity. Fig. 1 indicates
that running a single point calculation in the solvated phase using structures that were
geometry optimized in gas phase does not differ significantly. The lack of a significant
difference can be used as partial justification to run other levels of theory using the
geometry optimized structures from the least expensive B3LYP/6-31G*-LDZ/Gas level
of theory. Further calculations to generate figures such as fig. 1 with different parameter
sets need to be made before full justification. If no significant difference is found between
the schemes in calculating ∆GHHR, using single point method with geometries optimized
at lower levels of theory can be partially justified thereby expediting calculations as
geometry optimizations are much more costly.
Some features to note in fig. 1 include that points with lower calculated ∆GHHR values

show more deviation from the trend. We hypothesize that these deviations result from
statistical variation being more prevalent near those regions as there are more molecules
in the lower ∆GHHR ranges. If there were more molecules that are weaker hydride donors
(higher ∆GHHR) included in our study there would also be more data points that vary
from the linear regression. A larger number of stronger hydride donors than weaker
hydride donors were included in this study as there are more of stronger hydride donors
with experimentally determined ∆GH− values in the literature.
Future plans will run more calculations as described, but this preliminary result indi-

cates that those calculations will generate similar results as the difference in Gsolv and
HSCF is not that large across different levels of theory. In addition, the 3 molecules whose
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∆GHHR values that did not finish will be also calculated.

Comparison of Linear Regressions For Eight Parameter Sets

Because the comparison between the optimization schemes is not complete, we will
compare the different linear regressions according to eq. 4 for the B3LYP/BP86, 6-31G*-
LDZ/TZVP-LTZ, and C-PCM/Gas functionals, basis sets, and solvent models. Due to
5 molecules across each of the eight calculations having incomplete calculations, only 25
molecules will be included in the analysis. The molecules not included are FeN(CO)2,
HCo(dppe)2, Si(PiPr)3)Fe(H2)(H), CpFe(CO)2H, and HRh(depx)2.

Figure 2: Correlation between calculated ∆GHHR(H−) and experimental ∆GH− at the
B3LYP/TZVP-LTZ level with C-PCM model for acetonitrile
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Figure 3: Correlation between calculated ∆GHHR(H−) and experimental ∆GH− at the
B3LYP/6-31G*_ldz level with C-PCM model for acetronitrile

Figure 4: Correlation between calculated ∆GHHR(H−) and experimental ∆GH− at the
B3LYP/TZVP-LTZ level at gas phase.
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Figure 5: Correlation between calculated ∆GHHR(H−) and experimental ∆GH− at the
B3LYP/6-31G*_ldz level at gas phase.

Figure 6: Correlation between calculated ∆GHHR(H−) and experimental ∆GH− at the
BP86/TZVP-LTZ level with C-PCM model for acetonitrile
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Figure 7: Correlation between calculated ∆GHHR(H−) and experimental ∆GH− at the
BP86/6-31G*_ldz level with C-PCM model for acetronitrile

Figure 8: Correlation between calculated ∆GHHR(H−) and experimental ∆GH− at the
BP86/TZVP-LTZ level at gas phase.
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Figure 9: Correlation between calculated ∆GHHR(H−) and experimental ∆GH− at the
BP86/6-31G*_ldz level at gas phase.

Table 2: Summary of linear regression analysis of calculated ∆GHHR against ∆GH−

ordered by lowest to higher RMSE values.

Functional Basis Solvent RMSE r2 value Slope Intercept

B3LYP TZVP-LTZ Acetonitrile 9.893 0.832 0.8968 409.9
BP86 TZVP-LTZ Acetonitrile 10.634 0.793 0.8477 415.0a
B3LYP 6-31G*-LDZ Acetonitrile 10.643 0.8097 0.8941 404.1
BP86 6-31G*-LDZ Acetonitrile 11.323 0.7753 0.8566 408.4
B3LYP TZVP-LTZ Gas 36.448 0.3764 1.1533 434.9
B3LYP 6-31G*-LDZ Gas 37.168 0.3676 1.1764 426.4
BP86 TZVP-LTZ Gas 37.599 0.3434 1.1076 439.3
BP86 6-31G*-LDZ Gas 39.247 0.3273 1.1151 432.1

Starting by evaluating the performance of the different solvent models in figs. 2 to
9, the gas phase calculations perform worse than the calculations that used the C-PCM
model. This result is not surprising as one would expect not including the solvent in the
calculations would reproduce inaccurate ∆GHHR values as the solvent-solute interactions
are missing. The poor performance of the gas phase calculations can be seen in table 2.
Within the acetonitrile linear regressions, it can be visually noted that three data points

in figs. 6, 7, 2, and 7, consistently deviate from the linear regression. A reason why these
points deviate is that some of the calculations are in a transition state and the geometry
optimization algorithm used is unable to climb out of the saddle point. These saddles
points are most likely near the global minimum as the geometries of the molecules used
here were obtained from literature and x-ray crystallography data. An improvement that
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could be made to improve the linear regression would be to perturb the geometries around
the saddle point and run geometry optimizations until the molecule moves to a minimum
on the potential energy surface. This process has been attempted for molecules on the
saddle point, but no success in reaching minima has been made up until this point. More
efforts and techniques in this issue will be made and explored. Another potential reason
for the deviation is that the literature values may contain errors in the experimental
measurement.
Moving to compare functionals and basis sets, B3LYP consistently outperforms BP86

as shown in table 2. This result hints that hybrid functionals like B3LYP outperform gen-
eralized gradient approximation (GGA) functionals like BP86 for predicting hydricities,
but full confidence in this claim cannot be recommended without testing more function-
als. In comparing the basis sets the larger TZVP-LTZ basis set performs better than
the smaller 6-31G*-LDZ basis set although the magnitude of the improvement in the
accuracy is not as large as changing the functionals.
Overall, the best theory to run hydricity calculations amongst the eight sets is B3LYP/

TZVP-LTZ with C-PCM with ε = 37.5 as this level of theory and solvent model has
the lowest RMSE and r2 and slope values closest to unity. The extrapolated intercept
value, G∗(H−), is relatively close to the literature which have theoretical predicted the
value of G∗(H−) in acetonitrile at -400.7 and -404.7 kcal/mol14,34. In the evaluation of
the hierarchy of importance of the functional, basis set, and solvent model, only compar-
isons between two functionals and two basis sets can be made as only one solvent model
was examined. Future plans will examine more solvent models such as D-PCM, SMD,
and SM12 so that a conclusion on the relative importance of the solvent model to the
other two factors can be made. Comparing functionals to basis sets show that the choice
of functional is more important than the choice of basis set as B3LYP/TZVP-LTZ and
B3LYP/6-31G*-LDZ outperform BP86/TZVP-LTZ and BP86/6-31G*-LDZ. We make
this claim as even though BP86/TZVP-LTZ has a lower RMSE value than B3LYP/6-
31G*-LDZ, the r2, slope, and intercept values are better for B3LYP/6-31G*-LDZ. Slope
values should ideally be 1.0 since ∆GHHR is related to ∆GH− by a constant. That the
slopes deviate from 1.0 indicates some systematic error in our assumptions and calcula-
tions.
Future work will include evaluating a larger set of functionals from different classes

according to the hierarchy following Jacob’s ladder described by Rappaport et al. in which
they rank functional classes by GGA>meta-GGA>hybrid>fully nonlocal functionals35.
We will examine more GGA, meta-GGA, hybrid, and fully nonlocal functionals in the
future. We predict that the accuracy of the hydricity calculations will follow the hierarchy
discussed, but hope to see surprising results. More basis sets will also be examined such
as larger Pople36, Dunning37, and Karlsruhe38 basis sets. We expect that larger basis sets
will lead to more accurate hydricity predictions. In addition, we seek to further compare
the effects of using an ECP vs not using an ECP as well as comparing different ECPs.
The effects of using the ECP will only be relevant for compounds that contain heavier
elements. Since the ECP only replace core electrons which that do not interact with the
solvent as much as the valence electrons we expect that an all-electron calculation will
not significantly improve the calculated hydricity values and will make calculations more
expensive. To further improve the extent of our benchmark, we plan to include more
hydride donors. Along with the parameters, we also will look into calculating hydricity
values in other solvents such as water and DMSO although experimentally determined
hydricity values in those solvents are harder to find in literature.
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Conclusion
In this study, we compare how well DFT calculations with different sets of functionals,

atomic basis sets, and solvent models predict hydricity values using 30 molecules with
experimentally measured hydricities taken from the literature. Preliminary results sug-
gest that using gas phase geometry optimized structures for each molecule can be used in
place of geometry optimizing the molecule in solvent, but more data is needed to confirm
this claim. We compared eight sets consisting of a combination of two functionals, two
basis sets, and two solvent models. We conclude that using the B3LYP functional per-
forms better than BP86 and that using the larger TZVP-LTZ basis set does better than
6-31G*-LDZ. We determined of all the parameters examined, the linear regression for
B3LYP/TZVP-LTZ with the C-PCM solvent model yielded a RMSE of 9.893 kcal/mol,
r2 of 0.832, slope of 0.8968, and intercept of 409.9 kcal/mol. In addition, preliminary data
shows that it is important to use a solvent model to correctly predict hydricity values
and that the choice of functional precedes choice of basis set. For future plans, we seek
to expand our study to include more molecules, functionals, basis set, solvent models,
solvents, and ECPs toward the goal of contributing a widely useful benchmark study to
the literature.
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