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Abstract:

This research focused on children’s use of academic language when discussing fractions
while solving equal sharing problems. It  also focused on their mathematical thinking related to
fractions. An understanding of fractions is important to lay a foundation for students to
understand more advanced mathematical concepts. Research indicated that if fractions are to be
learnt from a deeper understanding, equal sharing problems can serve as a strong foundation. In
order to conduct this research, we analyzed the mathematical language used by 3 to 10 second-
fifth graders (ages 7 to 12) in interview contexts. The aim was to see how children use language
to express their interpretations of fractions. The hypothesis was that children tend to be
imprecise when talking about fractions which can lead to misconceptions (Grapin et al., 2019).
This analysis was intended to provide teachers with examples to consider so they can do a better
job of supporting students in learning the language and concepts of fractions.

Introduction:

The focal point of this study was the usage of children’s language while discussing
fractions. Fractions are the building blocks for students, which will help them recognize the
properties of ordering real numbers on a number line (Seigler & Fazio, 2013). Not only
children, but adults as well have difficulties with fractions. A study had shown that students
that were fractions poorly predicted a mediocre quality of fraction knowledge as they moved
forward in their academia  (Seigler & Fazio, 2013). Studies have shown that equal sharing can
provide a foundation that is robust, if fractions are to be learnt from a greater understanding.
This study focused on the organization of the children’s knowledge on fractions and how it
evolved from learning fractions inside the classroom (Empson, 1999).

It is important to pay attention to how students use language to interpret fractions,
because it is a way for them to demonstrate their understanding and it can support their
mathematical reasoning, ideas, and skills.  For example, scholars have shown a study (in this
study, the languages that were mainly focused on were Turkish and German) (Prediger & Kuzu,
2019). In the Turkish language, if there is ⅗ (three fifths), they would say “5 therein 3” or “5
thereof 3”, when translated to English (Prediger & Kuzu, 2019). However, in German, it would
translate to “3 fifths” or “3 of 5” (Prediger & Kuzu, 2019).  As the researchers have stated,
“speakers (from different languages) change according to contexts and communication partners”
(Prediger & Kuzu, 2019). In this study, bilingual children who were able to speak Turkish and
German were able to use the two different perspectives of fractions and made connections
between them, which showed “higher learning gains” (Prediger & Kuzu, 2019). The bilingual
students discussed the German nuances in Turkish and vice versa, showing that these nuances



were incorporated into their overall understanding of fractions (Prediger & Kuzu, 2019). The
language is important because students need to know the meanings and how to properly use
specialized mathematical terms in order to communicate and negotiate (Muschovich, 2012).

In order to conduct this study, we analyzed the usage of mathematical language from
eight third-through-fifth graders (ages seven to twelve) in interview contexts. The aim was to see
how children demonstrated their explanations on fractions and what modulation they draw on as
they solve problems, while using academic language.

Overview of Methodology

Context of Study

As an undergraduate novice researcher Applied Mathematics student, I, Reshmika
Singh, conducted this research study along with the guidance of Dr. Rebecca Ambrose from
the School of Education. Due to the COVID-19 pandemic and the need for social distancing,
all communication and interviews were given and conducted live video-chat Zoom. Moreover,
we collected data by using Zoom and a live digital whiteboard, called Jamboard.

Participants

This study was a qualitative study of children’s fraction understanding, therefore the
methods involved problem solving interviews with eight children, three boys and five girls
followed by an analysis of their responses to the problems. The participants, ages seven to
twelve, were recruited by emailing their guardians that were previously interested in
participating in a similar research study. During the start of this study, the children were
already engaged in online learning at the time.

Data Collection

After recruiting a participant, a meeting needed to be scheduled to interview each
student. The meetings were approximately twenty to forty-five minutes long, depending on
how many problems that a child completed. We used the Zoom recording option which
enabled us to capture video during each interview. The students wrote and showed their work
and drawings through a live digital whiteboard website, Jamboard, (for which they were able
to share their screen through Zoom.)

We gave each student three to four mathematical problems. The list of problems was
given by the mentor, Dr. Rebecca Ambrose, and contained seven fractional equal-sharing
problems, and each child was given the same problems (Empson & Levi, 2011, see Appendix
A for list of problems). During the interviews, the students were told to show and explain their
thoughts and reasonings on how they generated their solutions from each given problem.

The interviewer took an active role in eliciting children’s thinking. Occasionally, some
students were reticent while being interviewed and did not have much to say. Here are
examples of verbatim quotes from a couple of interviews, in order to get the participants to
talk:



Quote 1: “Do you want to tell me what you did there?”

Quote 2: “Do you want to tell me what you're thinking?”

Quote 3: “Can you tell me about the things that you have drawn, please?”

Quote 4: “Would you like to explain how you came up with the idea of setting it up?”

Most of the time, the students were communicative when it came to discussing fractional
problems. On occasion, a student was not sure how to start a problem, and they were provided
with clarification about the given problem or provide suggestions to what might help them get
started to solve the problem. For example:

Quote 1: “You want to try labeling the pieces?”

Quote 2: “If you're thinking about one person, how much would that person get?”

Quote 3: “ Okay, you have you, your mom, your brother, and your dad, and if you marked up those tiny cute squares
pieces you have, where would those pieces go, and how many would each person get?”

The interviewer also suggested that children draw pictures and write their thoughts down. In
Figure A, Student G. drew six squares to see how four people can share them equally.

Figure A: Student G showed work for a problem.

After the children completed drawing or showing their work, I asked them questions about it
to understand their thinking.

Data Analysis

After each interview, the researcher reviewed the recorded interview and manually
typed the transcripts. The transcripts from all participants were used to analyze the academic
language they used to explain their work. There were two different ways of looking at the
language that children used in their explanations: what fractional terms used and how they
discussed their quantities.



To look for particular terms, we identified words that are commonly used when
students are learning about or discussing fractions in a classroom-setting. The fractional terms
given were: fraction, part, whole, half, split, piece, each, denominator, and every. While going
through each transcript, the researcher highlighted and kept count of each child’s use of these
terms. In addition, we looked at all of the terms used by all 8 participants to see which terms
were used most frequently.

Following the usage of terms, we performed a second analysis related to the ways in
which students discussed quantities. We analyzed one problem from each child. The problem
was: “At Anthony’s party, 8 children want to share 6 small cakes equally. How much cake can
each child have?” We chose this particular problem, because every participant fully completed
it, and this one problem helped us to stay consistent, when collecting data.

We used Thompson’s (2010) definition of quantity in our analysis in which a quantity
includes an amount along with its units. For example, one of the participants, Student L.,
stated “6 cakes,” during his interview.  In this case the amount was stated and the unit was
specified, we considered a complete quantity. On occasion, students would not include units
when explaining their work. This sometimes made it difficult to know what they were
referring to in a problem situation. For example, Student M. stated while talking about her
work: “those are four.” This verbatim was puzzling because she did not specify what the
“four” came from.

Even when children stated quantities, at times it was not clear why these quantities
were being discussed. So we coded each statement about quantities according to whether it
was  “clear” or “vague” as to why the child was talking about it. By reexamining the previous
example, Student L’s statement is identified as “clear.” However, if we could not determine
why a quantity was being discussed, then its relevance is indicated as “vague.”

In order to analyze the quantities from each interview, we took a representative sample
of their statements from the transcript that incorporated reasonings and clarifications on how
they reached their attempted solutions. The sample contained the students’ mathematical
thinking done throughout the interview for one problem; researchers decided to focus on one
problem to stay consistent with the findings. (No informal utterances were included in the
samples.) Figure B shows an example:



Figure B: A part of Student C’s transcript shown to see which indicates clear or vague.

The following discussion illustrates our approach to analysis. We took a sample where
Student C discussed one of the equal-sharing problems. The blue highlight represented
“clear,” which meant that it was why they stated the numbers and quantities. For example,
when this student stated “8 kids,” we knew that phrase came from the problem given.
Therefore, we highlighted it in blue and associated it to be “clear.” Otherwise, if we did not
know where the quantity came from or why it was being discussed, then it was coded as
“vague.” For example, we see that the student stated “a line and a half.” We could not
determine why the students was talking about the line. The importance of the entire
methodology used was to substantiate that the students are conscious of their language and can
communicate why they were talking about numbers.

Results

After interviewing eight participants, data was collected and we had to split the results
into two parts: preliminary and secondary results. The secondary results examined the
students’ work and drawings while they attempted to reach their solutions.

Preliminary Results

In the preliminary results, researchers kept count of fractional terms used by the
students, recognized how precise they were with their quantities, and identified the relevance
of the participants’ quantities. We calculated the general fractional terms used by each student,
during their interviews and totalled them up to see what terms were used often. The
significance of these terms was that we were trying to see how frequently the students used
those fractional terms, when explaining their process of getting a solution. We came to the
conclusion that “each” was used the most, since the problems consisted of finding how much
“each” child would get. In addition, “half” was the second most frequently used term by the
students. It was possible that some students may have misused “half” during their interview.
(Figure A).



Figure C: Counted the terms used by students, during the interviews.

Figure B shows the participants' level of precision when expressing quantities. We
found that about eighty-seven percent of the time, students stated the amounts in their
explanations, and they specified the units approximately forty-four percent of the time. For
example, if a student stated “6 small cakes,” then we saw that an amount (6) is stated and a
unit (small cakes) specified. Therefore, while participants specified the amount most of the
time, only half the times did they make it clear what unit they were referring to.

Figure D: Level of precision in expressing quantities.

In analyzing the relevance of the quantities that students discussed, researchers
analyzed why the students discussed quantities, even if they were not precise when stating
their quantities. Quantity phrases were considered to be “clear” if it was evident why the child
was talking about that quantity. Otherwise, quantity phrases were considered to be “vague” if
it was unnoticeable or unknown why the student was talking about that quantity. For example,



when observing Student L., researchers noticed that quantities were “clear” five times and
“vague” twice throughout its explanation for one problem. Therefore, the percentage of the
relevance of the quantities that was “clearly” discussed was seventy-one and twenty-nine for
“vague.” Overall, quantities discussed in the participants’ explanations were clear eighty-five
percent of the time. We concluded that the participants tended to make it “clear” while they
were discussing specific quantities when explaining their strategies. The importance of this
chart was to make sure that the students understand and know why they were talking about
quantities rather than just arbitrarily operating on numbers.

Figure C: Clear vs Vague Chart.

Secondary Results

In our secondary results, we observed that seven-eighths of the students were not
hesitant in explaining their work. We noticed that every student had a certain approach to
solving the given problems, but most students used drawings to explain their work.S



Figure D: Variety of approaches for one particular problem.

Connected to our study, we found that these given equal-sharing fractional problems can
be solved in several ways that the participants had done (refer to Figure D).  Five of the eight
students who were interviewed successfully completed the problem and felt satisfied with their
work. However, three of them did not finish the problem. Students M, I, Z, J, F, and Student G
started off with drawing six cakes. Then, they split them up into smaller pieces. Student M cut
two circles into fourths and four circles into halves and verbally counted how each piece would
go to each person. After Student L split up his circles, he managed to compute fractional terms to
obtain an answer. Student T drew eight people and forty-eight squares, where each person got
three squares. Eventually, Student T counted the pieces for each person, in order to reach her
final solution. Student F split each six circles into fourths, and Student Z split them up into
eighths. Student J drew circles three times, since he lost count the first two tries. Towards the
end, he split the third set of circles into fourths and color coded them to represent each child’s
equal share of cake. Student F made six circles cut into fourths, which then led her to list out the
multiples of six and eight. She found that the least common multiple of six and eight is
twenty-four, and she divided it into eighths, resulting in getting a final answer of three fourths.
Though Student C’s had incomplete work, he drew six circles cut into fourths. Similarly, Student
G only managed to draw six circles.

Discussion

After analyzing the data, researchers noticed that the students tended to use the term,
“half,” numerous times. This shows that the students were very comfortable in using that, and the
possible reason is that the students were taught how to split a pie in halves, before going into
thirds, fourths, and so on. Researchers looked into the participants’ level of precision when
expressing quantities; and we noticed that less than half of the students specified the units for
those amounts, which can happen when being careless while explaining mathematical problems.



However, most of the students were “clear” in their explanations, because it was comprehensible
and straightforward where and why they stated their quantities. In addition, we observed that the
students showed their work and drawing in different ways, during their interviews (refer to
Figure D). It could be because they were taught by different teachers or the students’ guardians
taught them several to solve a fractional equal-sharing problem, which was surprisingly
unexpected.

Due to the time constraints during the interviews (twenty to forty minutes in each), some
participants struggled to finish to reach their solutions to the three-to-four problems given. A few
of them weren’t able to finish the third or fourth problem. Another factor of not finishing on time
was perhaps that some students were clueless and did not have enough experience and practice
with fractions. For example, Student G., an eight years old student in third grade, seemed like
she had a difficult time in not being able to finish two problems, especially since she stated that
she just started learning fractions at that time. A second participant, Student M. also struggled
with the equal-sharing problems, as she stated that her teacher did not teach her fractions at that
moment. Furthermore, this research was conducted during the COVID-19 pandemic and when
the online classes arose, and it was possible to have unsatisfactory internet connection, especially
during one of the interviews with Student C. Moreover, the researchers gave the participants one
type of fractional equal-sharing problems, so it could be a reason why some students weren’t
able to complete it or had struggles with it.

Implications

Attention to language should be central to fraction instruction. Teachers should use
correct terminology and help children to develop the terminology they need to explain their
thinking. For example, what the “denominators” or “numerators” represent and how they can be
used. Teachers need to recognize the importance of students’ learning what to call various
fractional parts. In our study, during Student M’s interview, she drew some circles and cut some
of them into halves and fourths, and she stated that each child would get “a third of a pie;”
however, she might have meant “three fourths.” Thus, children need more opportunities to name
fractional quantities. When doing so, students should include the units that they are working
with. For example, when that same student stated “a third of a pie,” (“pie” is the unit), which
indicated the preciseness when discussing quantities. In addition, drawing fractions help students
understand fractional quantities. With this, children would be able to recognize and realize what
parts of a whole can look like and know how to successfully discuss the fractional concepts. For
example, all the participants drew out the fractions to help themselves to thoroughly understand
and talk through what each given problems were asking. Furthermore, in our study, it was
noticed that there were a variety of strategies to reach a solution in these equal-sharing problems.
Learning the different ways of solution strategies would be helpful to students, so they can
understand and look at the fractional concepts, in diverse angles. For example, Student F used an
approach, where she found the least common multiple, while Student J added fractions to reach a
solution. Hence, it is essential to take these measures in order to help students enhance their
understanding of fractions.

Conclusion:

At the start of the study, we hypothesized that children would be imprecise when
discussing fractions, potentially limiting their understanding. This turned out to be true. While



the participants sometimes used academic language in their explanations by using the terms
“halves” and “each,” they seldom used formal terms such as “whole”, “fraction” and “part”.
Moreover they never used the term “denominator.” In addition, they often were imprecise
when discussing fractions by excluding the reference to the whole unit. However, most
students successfully stated the specific amounts. Additionally, we discovered that some
participants were clear in describing how the numbers were related to the problems that were
given. In order to build on this study we could expand the number of participants.

The purpose of the research was to have teachers be able to look at our examples and
realize better ways to teach fractions to their students, while focusing on their academic
language. The most common misconceptions, where children don’t often look at the size of
the pieces, comes from a heavy emphasis on symbol manipulation rather than a focus on
understanding fraction magnitude. According to Fazio and Siegler (2011),  “fractions are an
important stepping-stone for learning advanced mathematics; they are also commonly used in
everyday life.” Therefore, language is essential to learn and understand fractions.
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Appendix

A) List of Problems Given to All of the Participants

1. 4 children want to share 6 sandwiches so that each child gets the same amount.
How much can each child get?

2. 3 children share 7 small burritos. How much should each child get?

3. At Anthony’s party, 8 children want to share 6 small cakes equally.  How much
cake can each child have?

4. Subway provided 12 sandwiches for a child’s birthday party.  If there were 18
guests at the party, how much sandwich would each guest get?


